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Abstract— We propose a frequency-domain state represen-
tation to improve the performance and reduce the computa-
tion and data requirements of reinforcement learning. This
approach is tailored to tracking tasks of periodic trajectories.
We apply the proposed methodology to an active knee prosthesis
application. Using the high-fidelity simulator MuJoCo, we
demonstrate significant performance improvements (in terms
of Bellman error) for the proposed frequency-domain state
representation relative to the current state-of-the-art time-
domain state representation used in these applications.

I. INTRODUCTION

Feedback control algorithms such as reinforcement learn-
ing (RL), determine control actions based on the current state
of the system. This state is typically constructed via a suffi-
cient number of previous measurements such that this state
and system satisfy the Markov property. RL is particularly
attractive for many engineering applications as it does not
require an explicit dynamical model of the system, we can
apply RL using only data generated from both real-world
experiments and high-fidelity simulators. While we ideally
want to include all available measurements in the state, the
amount of data and computation time required to learn a
suitable RL policy scales poorly with the dimension of the
state. Thus, an efficient and reduced order representation of
this state is important to successfully deploy these algorithms
in embedded (robotics) applications.

In this work, we consider a specific class of periodic
trajectory tracking problems that is particularly relevant to
control of active knee prostheses. In these problems, we can
select parameters for a lower level controller at each step. In
active knee prosthesis applications, this lower level controller
corresponds to an impedance controller (IC) with three IC
parameters [1]. The system then produces a trajectory of
measurements that depends on these parameters and the
state of the system. The goal is to design a policy to
select these parameters at each step such that the trajectory
of measurements at each step follows a specified periodic
reference. Since there are many measurements taken within
this trajectory, we require a lower dimensional representation
of these states based on some set of key features from this
trajectory. In machine learning, this procedure is sometimes
called feature extraction, but we use the term state represen-
tation for consistency with control theory.

A standard practice is to normalize these IC parameters
according to body proportions and keep these parameters
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constant for a particular user. However, this overlooks the
interpersonal and intra-personal variation of walking pat-
terns. RL has been proposed as a natural method to ad-
dress these limitations [2]. In particular, RL allows us to
determine a suitable policy for adjusting these parameters
in real-time that is tailored to each individual. Previous
studies represented the state of the system using time-domain
characteristics [2]–[7]. This approach is based on the extrema
of the trajectory in the time domain. The state is then defined
as the deviations between the observed and target extrema
in terms of both time and magnitude.

However, a major drawback of this approach is that it
discards all the information between the extrema. To address
this drawback, this study proposes a frequency-domain state
representation for RL, i.e. Harmonic RL. Specifically, we can
approximate these trajectories via a truncated Fourier series.
With this approach, the information between the peaks can be
preserved by representing the state as the difference between
the observed and target Fourier series coefficients. Fourier
series have been used previously in RL to approximate the
value function [8] and more recently have been applied as
a pre-processing step in deep RL [9], [10]. To the best of
our knowledge, using Fourier approximations to represent
the state of the system for RL is a novel contribution.

To train and test the influence of harmonic state repre-
sentation, a custom environment is created using a physics
simulation software called MuJoCo [11]. MuJoCo was cho-
sen for this study of active knee control because this software
includes the ground reaction forces (GRF), which are crucial
in human walking. The following summarizes the contribu-
tions of this study:

• Methodology: We propose a frequency-domain state
representation for RL applied to periodic trajectory fol-
lowing tasks. We justify the use of this representation
via the relationship between the Fourier coefficients and
the original objective of periodic trajectory tracking.

• Application: We demonstrate the efficacy of this
frequency-domain state representation via an active knee
prosthesis application. Using a custom multi-body hu-
man gait simulation that includes GRF (built with Mu-
JoCo) we demonstrate significantly better performance
of the proposed frequency-domain approach relative to
the previously studied time-domain approach.

The paper is structured as follows. First, Section II lays out
the problem and the proposed frequency-domain state rep-
resentations. Section III describes a standard RL algorithm
that is used in this study (Q-learning). Finally, Section IV



discusses the custom simulation environment for the active
knee prosthesis application and demonstrates the benefits of
the proposed approach using this simulator.

II. PROBLEM SETTING AND STATE REPRESENTATION

We consider a dynamical system in which we measure a
(scalar) variable θ at T equally spaced subintervals δ := 1/T .
We collect these measurements at each time step t ∈ Z :=
{0, 1, . . . } in the vector xt defined as

xt :=
[
θ(t) θ(t− δ) . . . θ(t− (T − 1)δ)

]⊤
We are also provided with a target trajectory for θ within
this subinterval:

x =
[
θ(1) θ(1− δ) . . . θ(1− (T − 1)δ)

]⊤
We assume that these T measurements within a time

interval [t − 1, t] contain sufficient information to define a
Markov decision process with a manipulated input/action
ut ∈ U ⊆ Rm and random variable wt ∈ Rq . Formally
speaking, we denote the dynamics by

xt+1 = fx(xt, ut, wt) (1)

The following are some specific characteristics of our prob-
lem, motivating the proposed harmonics solution approach:
(i) The measurements θ is periodic within the interval [t−

1, t], and the target trajectory θ satisfies θ(t−1) = θ(t).
(ii) At each time step t ∈ Z, we can select an input ut that

is then constant across the next interval [t, t+ 1).
(iii) The number of measurements T is much larger than the

internal state dimension, and as such, it is reasonable to
assume that there is a Markovian property between the
pair (xt, ut) and the next state xt+1.

This problem setting is particularly relevant in hierarchical
control schemes, in which the input ut defines parameters for
a low-level control system and the goal is to track a periodic
trajectory. One such application is an active knee prosthesis
discussed in Section IV.

We define the squared difference between θ and θ on the
interval [t− 1, t] as

∥θ − θ̄∥2[t−1,t] :=

T−1∑
i=0

(
θ(t− δi)− θ(1− δi)

)2
= ∥xt − x∥2

The goal is to select ut to minimize the squared distance
between θ and θ with minimal control effort. We define this
performance via the stage cost:

gx(x, u) =
1

T
∥x− x∥2 + u⊤Ruu (2)

in which Ru is a positive definite matrix that weighs the cost
of different inputs. Note that 1/T is used to normalize the
cost by the number of measurements. In the ideal case, we
want to find a policy ut = πx(xt) to minimize the expected
value of a discounted sum of stage costs defined as

min
πx

E

[ ∞∑
k=0

γkgx(xk, uk)

∣∣∣∣∣ uk = πx(xk) and (1)

]
(3)

Fig. 1. Plot of θ and θ̂ indicating the difference in extrema that are used
to define s in the time-domain feature extraction.

in which γ ∈ (0, 1) is the discount factor, and E [·] denotes
expected value with respect to the random variables wk.

The problem is that T can be very large and therefore
solving (3) via, e.g., reinforcement learning (RL) or approx-
imate dynamical programming, is very difficult. Instead, a
more efficient representation of the state, defined based on
key features of θ, may be sufficient to approximately define
a Markov decision process and solve (3). In other words, we
want a map st = ϕ(xt) from xt ∈ RT to a low dimensional
vector of features st ∈ Rn with n << T that is sufficiently
informative to define the dynamics

st+1 ≈ f(st, ut, wt) (4)

in which f(·) is the state transition function for st. We also
require features that are sufficiently informative to define a
new stage cost g(s, u) that is approximately equal to the
original stage cost:

gx(x, u) ≈ g(ϕ(x), u) (5)

Subsequently, we discuss two approaches to define ϕ(·)
and therefore st. The first defines st via time-domain features
of xt such as extrema and is used in the application discussed
in Section IV. The second is the frequency-domain approach
proposed in this paper that leverages periodicity to define st
as the Fourier coefficients of θ.

A. Time-domain state representation via extrema

One common approach to define s is to use the extrema
of θ on the interval (t − 1, t]. The difference between the
observed extremum and the target extremum is encoded
through the difference in value (∆P ) and location (∆D)
as shown in Figure 1. The resulting state representation is

s =
[
∆P1,∆D1, . . . ,∆P4,∆D4

]T
(6)

With this state representation, the stage cost is

g(s, u) = s⊤Rss+ u⊤Ruu (7)



in which the matrix Rs ≻ 0 is used as a tuning parameter.
There are, however, a few shortcomings of this approach.

First, the relevant extrema in the reference trajectory must be
determined manually in the controller design step based on
the application of interest. For more complicated trajectories,
this step may prove difficult. Second, and more importantly,
this representation ignores the behavior of the system be-
tween these extrema. Thus, there is no direct connection
between the stage cost in (7) and the original stage cost
gx(x, u). Instead, we are required to tune Rs until we achieve
the desired controller behavior.

B. Frequency-domain state representation via Fourier series

Since we are considering problems in which θ and θ are
smooth and periodic, we can instead represent these trajec-
tories via a linear combination of harmonics. Specifically,
we can represent these trajectories via a (truncated) Fourier
series with N harmonics:

θN (ζ) =
1

2
a0 +

N∑
n=1

an cos(ωnζ) + bn sin(ωnζ) (8)

in which ζ ∈ [0, 1] is a general dummy variable, ωn = 2πn,
and the pair (an, bn) are the Fourier series coefficients.1 As
demonstrated in Figure 2, periodic trajectories of interest can
often be represented with only a few harmonics. In this case,
N = 6 is sufficient. Thus, for each interval [t−1, t], we have
the approximations

θ(t− 1 + ζ) ≈ θt,N (ζ) θ(ζ) ≈ θN (ζ)

For the state xt, let a0 and (an, bn)
N
n=1, denote the first

N coefficients approximating the periodic signal θ from [t−
1, t]. Let a0 and (an, bn)

N
n=1 denote the first N coefficients

from the periodic reference signal θ from [0, 1]. We define s
as the difference between these coefficients such that

s = ϕ(x) =
[
∆a0, ∆a1, ∆b1, . . . , ∆aN−1, ∆bN−1

]⊤
in which ∆an = an − an and ∆bn = bn − bn. Note that
the time-domain approach in II-A requires that the relevant
features are tailored to the problem of interest. However,
in the frequency domain approach, we need to choose only
the number of harmonics N . Thus, the frequency domain
approach is easier to generalize across various applications.

Moreover, representing the state of the system via Fourier
coefficients allows us to provide a straightforward approx-
imation of the cost function in (2). We note that for suffi-
ciently large N :

∥xt − x∥2 = ∥θ − θ∥2[t−1,t] ≈ ∥θt,N − θN∥2[0,1]

in which

∥θt,N − θN∥2[0,1] =
T−1∑
i=0

(
θt,N (i/T )− θN (i/T )

)2
1Note that b0 is irrelevant to θN (ζ) and ignored in subsequent discussion.
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Fig. 2. Performance of the Fourier Series to approximate a smooth
and periodic trajectory with the increasing number of harmonics. Top:
trajectories, bottom: Approximation error ∥θ − θN∥[0,1]

For sufficiently large T , we can approximate this summation
as the integral

1

T
∥θt,N − θN∥2[0,1] ≈

∫ 1

0

(
θt,N (ζ)− θN (ζ)

)2
dζ

From the orthogonality of the Fourier series, we have∫ 1

0

(
θt,N (ζ)− θN (ζ)

)2
dζ =

1

2
(an − an)

2

+
1

2

N∑
n=1

(
(an − an)

2 + (bn − bn)
2
)

Therefore, we have 1
T ∥x − x∥2 ≈ 1

2∥s∥
2. We thus have an

approximate relationship between the norm of the frequency-
domain features (s) and the difference between the realized
and target trajectories for θ. Hence, we define

g(s, u) =
1

2
∥s∥2 + u⊤Ruu (9)

and note that this definition satisfies (5). With this harmonic
state representation, there is now a direct connection between
the stage cost in (9) and the original stage cost gx(·).



III. Q-LEARNING ALGORITHM

In this section, we briefly review the standard discounted
Q-learning algorithm [12], [13], which is applied to train
the Q-function in the setting of our proposed harmonic state
representation. We define the Q-function

Q∗(s0, u0) := min
π
g(s0, u0)+ (10)

E
[∑
k≥1

γkg(sk, uk)
∣∣ uk = π(sk) and (4)

]
Note that (10) uses the features s instead of the complete
state in (3). The classical equivalent characterization of
the Q-function defined in (10) is the so-called Bellman
equation [14]:

Q∗(s, u) = g(s, u) + γ E
[
min
u+∈U

Q∗(f(s, u, w), u+)] (11)

This implicit equation needs to hold for all the state-action
pairs (s, u). The optimal policy π∗ in the definition of Q-
function Q∗ in (10) can be computed via

π∗(s) = argmin
u∈U

Q∗(s, u). (12)

The alternative Bellman characterization (11) is the starting
point to compute Q∗ numerically. The implicit equation (11)
often cannot be solved exactly for two reasons: (i) The
function Q∗ is an infinite dimensional object while for
numerical purposes we can only restrict our search space
to a finitely many parameterized approximation, and (ii) the
Bellman equality (11) should (approximately) hold for all
(infinitely many) pairs (s, u) whereas we can only ensure
this for finitely many pairs (sk, uk), often in the form of an
offline trajectory of the system such as

D = {sk, uk, s+k }
K−1
k=0 , where s+k = f(sk, uk, wk).

With these two limitations in mind and given the above of-
fline dataset D, a common practice to restrict the Q-function
to a finitely parameterized function Q̂r with the parameter
r ∈ Rn and approximate the Bellman equation (11) via the
so-called projected Bellman equation [15]:

r∗ = arg min
r∈Rn

K−1∑
k=0

(
Q̂r(sk, uk)− g(sk, uk) (13)

− γ min
u+∈U

Q̂r∗(s
+
k , u

+)
)2

A common approximation class is when the approximate Q-
function is linearly parameterized as

Q̂r(s, u) = ⟨Ψ(s, u), r⟩, (14)

where the vector Ψ(s, u) = [ψ(1)(s, u), . . . , ψ(n)(s, u)] is the
collection of n basis functions, r ∈ Rn is the approximation
parameters to be learned, and ⟨·, ·⟩ is the conventional inner
product between two Rn vectors. Note that considering the
linear approximation (14) makes the right-hand side of the
projected Bellman equation (13) a quadratic optimization in
the parameter r. A simple iterative algorithm converging to
the solution r∗ in (13) can be obtained by applying the

gradient descent with respect to r on the right-hand side
of (13) and updating the parameter r on the left-hand side.
This approach leads to the update equation

r(i+1) = r(i) − η(i)
K−1∑
k=0

(
⟨Ψk, r

(i)⟩ − gk (15)

− γ min
u+∈U

⟨Ψ(s+k , u
+), r(i)⟩

)
Ψk

where we use the shorthand notation Ψk = Ψ(sk, uk) and
gk = g(sk, uk), and the scalar η(i) is the stepsize of the
gradient descent which is typically set proportion to 1/i to
ensure the convergence of the algorithm. It is worth noting
that the algorithm (15) can be accelerated using momentum
techniques from the optimization algorithm literature [16],
which proves to be effective in our numerical experiments:

r(i+1) = r(i) − η(i)
K−1∑
k=0

(
⟨Ψk, r

(i)⟩ − gk (16)

− γ min
u+∈U

⟨Ψ(s+k , u
+), r(i)⟩

)
Ψk

− µ
(
r(i) − r(i−1)

)
IV. KNEE PROSTHESIS APPLICATION AND RESULTS

As a proof of concept application, active knee prosthesis
control is chosen as the case study to assess the effectiveness
of the harmonic state representations. We first introduce the
domain and then apply the algorithm in Section III.

A. Introduction to Active Knee Prosthesis Control

A motorized prosthetic knee is typically controlled using
impedance control (IC) [1].

τ = −K(θ − (θs))− Cθ̇ (17)

where K is the stiffness coefficient, θs is the set-point angle
and C is the damping coefficient. Together, they constitute
the IC parameters, which are the main concern of this
application. The variables θ and θ̇ are the angular position
and velocity of the joint, respectively. The torque applied by
the motor is denoted by τ .

The personalization of the IC control is an open prob-
lem in the active prosthesis domain. One approach is to
normalize parameters according to body proportions, but
this approach overlooks two real-life aspects. The variation
between two people with similar body proportions (inter-
personal variations) and the variation between two steps of
an individual (intra-personal variations). This study aims to
achieve adaptive and personalized IC parameters via RL.

Within the scope of this study, we focus on the Swing
Extension (SWE) phase of the level ground walking, but the
study can be expanded to every phase. SWE encapsulates
the part of the walking from full flexion of the knee to full
extension. Recall the characteristics listed in Section II. The
first characteristic is satisfied as the objective is to recreate
healthy human knee trajectory [17], which is smooth and
periodic by nature. The proposed system is a discrete system,
where the adjustments on the IC parameters are taken just



Fig. 3. The custom model created in MuJoCo. Blue circles depict the five
healthy side joints, yellow circle depicts the passive ankle prosthesis, and
green circle depicts the knee prosthesis aimed to control.

before the start of the SWE phase, and they are applied only
throughout the following SWE phase. This fact satisfies the
second characteristic. The third characteristic is assumed to
be satisfied given the large sampling rate of θ, that is 200Hz.

Level ground walking is a highly variant activity, even
across able-bodied people. Typically, this variety is even
more for amputees. Thus, RL is a strong candidate for learn-
ing user-specific system dynamics (f ) and acting accord-
ingly. However, one must first create a suitable environment
to train and evaluate an RL algorithm.

B. Reinforcement Learning Environment

An environment dedicated to running the algorithm is one
of the most fundamental components of a RL project. This
environment is created by Multi-Joint dynamics with Contact
(MuJoCo) [18], which is a physics engine that primarily
focuses on multibody dynamics and accommodates most of
the benchmarking environments in the field of RL [19]. One
should note that this environment does not aim to perfectly
replicate the walking motion but to create an environment
that can be enhanced by training an RL agent.

The model (Figure 3) that this thesis utilized is a modified
version of the 17 DoF Humanoid model of Gym [19],
which is one of the benchmarking environments for RL
applications. The Humanoid model was reduced to a 7-
link model, which includes feet, shanks, thighs, and HAT
(combined entity of head-arms-trunk). The proportions of
different body parts are adjusted according to the average
male body proportions given in [20]. All the model joints
are controlled with the IC Law given in Equation 17, with
the proper constraints on different types of joints (healthy
joints, active knee prosthesis, passive ankle prosthesis).

Ground reaction forces (GRF) are one of the most impor-
tant aspects of walking. Including GRF in the simulation is
crucial to prove the approach has reciprocity in the real-life
application. One of the significant contributions of this thesis
is the customized RL environment that includes GRF. This
was possible due to the strong contact dynamics capabilities
provided by MuJoCo.

TABLE I
HYPER-PARAMETERS USED IN EXPERIMENTS.

Noise Standard Deviation σ 0.01
Number of Harmonics N 6

Discount Factor γ 0.7
Learning Rate η 0.7

Momentum Rate µ 0.9
Batch Size Kb 100

Target Samples Ns 8000

The simulation environment is enhanced by a zero-mean
Gaussian noise with standard deviation σ. In real-world
scenarios, the training of the agent is expected to be richer in
uncertainty. Thus, the investigation for non-Gaussian noise
is left to clinical studies.

C. Results

In the context of this custom environment, the state of the
model can be described as a combination of all the described
joints. However, by the nature of the problem, in real life,
the only accessible information is on the prosthetic knee.
Thus, the approximate Markov state s motivated in Section
II only contains the information of the prosthetic knee. Two
sets of experiments are conducted to compare the perfor-
mance of the two different state representation approaches
(ϕ): time-domain and frequency-domain. To investigate the
performance of a policy, we consider the average Bellman
error (BE), which is the objective of the right-hand side of
(13) evaluated on our offline dataset D, i.e.,

BE :=
1

K

K−1∑
k=0

(
⟨Ψk, r

(i)⟩ − gk − γ min
u+∈U

⟨Ψ(s+k , u
+), r(i)⟩

)2

The initial weight vector is the “naive” controller that has
no adjustments on the IC parameters. With that in mind,
the percentage improvement throughout the training is thus
described by

∆BE(%) := 100× BEi −BEf

BEi

, (18)

where ∆BE(%) is the percentage change, which indicates
improvement when it is positive. The variables BEi and
BEf are the initial and final bellman error values, respec-
tively. The hyper-parameters of the two experiments are kept
the same under different state representations. These key
hyper-parameters are reported in Table I.

Different state representations result in differences in the
scale of the average bellman error. For a better comparison,
the average bellman error is normalized for both experiments.
The evolution of BE is plotted in Figure 4.

Table II presents the percentage performance improvement
for both setups. The significant improvement by the harmonic
state representation can be seen clearly in both Figure 4
and Table II. This suggests that frequency-domain features
encode the trajectory information better and provide a more
efficient learning process.
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Increasing the richness of the Q-function parameterization
(e.g., with neural networks) may improve the controller
performance. However, limited computational power on the
prosthetics and critical response time should be taken into
consideration when increasing the complexity of this param-
eterization.

Through simulations, the proposed RL framework has
proven to be a potential solution to achieve a personal and
adaptive active knee prosthesis controller by targeting the
healthy human knee trajectory. However, amputee walking
and able-bodied walking do not have one-to-one correspon-
dence. Thus, the real-life improvement of the algorithm still
needs to be investigated through clinical studies. A possible
future direction can be extracting personal target trajectories
through a musculoskeletal simulation. Having such a tool
would also pave the way to use this algorithm on other
ambulation modes such as ramp ascent or stair ascent.

Despite the promising performance results in the MuJoCo
simulation environment, it should be noted that the algorithm
converges in around 40 iterations with a batch size of 100
samples, which is approximately equivalent to 4000 steps.
In real life, asking an amputee to walk 4000 steps (around
70 mins) is not realistic. Thus, the migration of this study to
an actual controller should be done considering such clinical
constraints. Realize that these experiments are focused on
training the agents from scratch. One approach to increase
the convergence speed is using a pre-trained agent as the
starting point. This can be achieved by training an agent
using a pool of data collected from amputees with diverse
profiles.

Algorithm’s real-world performance should be evaluated
through controlled experiments. A recommended approach
would be to conduct daily comparisons, with and without
the algorithm, while maintaining a blind testing condition to
prevent bias. This methodology will ensure that the impact
of the algorithm is accurately assessed in practical scenarios.

TABLE II
SWE BY RL FRAMEWORK USING DIFFERENT STATE REPRESENTATIONS.

Percentage Improvement Convergence
Frequency Domain 15.70% 40 iterations
Time Domain 6.16% 30 iterations
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