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Abstract

Inverse Optimization (IO) is a framework to learn the unknown objective function
of an expert decision-maker from a past dataset. In this paper, we extend the
hypothesis class of IO objective functions to a space of reproducing kernel Hilbert
space (RKHS), thereby enhancing its features to an infinite dimensional space. We
show that a variant of the representer theorem holds for a specific training loss,
hence reformulating the problem to a finite-dimensional convex optimization. To
address the scalability issues often encountered with kernel methods, we further
propose a Sequential Selection Optimization (SSO) algorithm to efficiently train
the proposed Kernel Inverse Optimization (KIO) model. Finally, we demonstrate
the generalization capabilities of the proposed KIO model and the effectiveness of
the SSO algorithm through learning-from-demonstration tasks within the MuJoCo
benchmark.

1 Introduction

Inverse Optimization (IO) is distinct from traditional optimization problems, where we typically
seek the optimal decision variables by optimizing an objective function over a set of constraints. In
contrast, inverse optimization works “in reverse” by determining the optimization objective given the
optimal solution. The inherent assumption in IO is that an agent generates its decision by solving
an optimization problem. The assumed optimization problem is called the Forward Optimization
Problem (FOP), which is parametric in the exogenous signal § with the corresponding optimal
solution . Therefore, IO aims to deduce the objective function of the FOP (the constraint is assumed
to be known in this paper) from a dataset of exogenous signal and decision pairs {(3;,;)} ;.
Consequently, we can leverage the FOP derived from the expert’s dataset by solving it to mimic the
expert’s behavior when encountering new exogenous signals. IO has garnered widespread attention
within several fields, giving rise to numerous studies encompassing both theoretical and applied
research. Application domains include vehicle routing [10, 27, 37], transportation system modeling
[25, 7], portfolio optimization [22, 36, 21], power systems [8, 14, 28], electric vehicle charging
problems [ 5], network design [13], healthcare problems [5] as well as controller design [2]. For a
more detailed discussion on different applications of IO, we refer the readers to the recent survey

paper [9].

IO can be categorized into classic IO and data-driven IO. In classic 1O, only a single signal-decision
pair is considered, where the decision is assumed to be the optimal solution of the FOP (i.e., there is
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no noise), and different classes of FOPs have been studied, such as linear conic problems [, 33, 18].
However, in real-world applications, there are usually many observations of signal-decision pairs, and
due to the presence of noise, it is usually unreasonable to assume noiseless data (i.e., that all observed
decisions are optimal w.r.t. a single true data-generating FOP). Additionally, for complex tasks, the
chosen FOP may only approximate the task, not allowing for perfect replication of the observed
behavior from the expert. Such cases are called data-driven IO problems. In such scenarios, a loss
function is usually used to compute the discrepancy between observed data and the decision generated
by the learned FOP. Examples of loss functions include the 2-norm distance loss [4], suboptimality
loss [22], variational inequality loss [ 7], KKT loss [19] and , augmented suboptimality loss [31].

In data-driven IO, the objective function of FOP is typically non-linear with respect to an exogenous
signal 5. Hence, classical methods that learn an FOP based on linear function classes may oversimplify
the problem and lead to suboptimal solutions. One effective approach to addressing the expressibility
issue in data-driven IO problems is the introduction of kernel methods. These methods have been
extensively studied within the context of IO [32, 7] and have shown promising results for scaling IO
to address practical problems. The application of kernel methods in IO allows for the exploration
of a broader class of optimization problems, thereby enhancing the model’s ability to generalize
from observed decisions to unseen situations. Specifically, using a kernelized approach facilitates the
embedding of decision data into a richer feature space, enabling the deduction of an FOP that not
only fits the training data but also exhibits strong generalization capabilities.

Contributions. We list the contributions of this work as follows:

(1) Kernelized IO Formulation We propose a novel Kernel Inverse Optimization (KIO) model
based on suboptimality loss [22]. The proposed approach leverages kernel methods to
enable IO models to operate on infinite-dimensional feature spaces, which allows KIO to
outperform existing imitation learning (IL) algorithms on complex continuous control tasks
in low-data regimes.

(2) Sequential Selection Optimization Algorithm To address the quadratic computational
complexity of the proposed KIO model, we introduce the Sequential Selection Optimization
(SSO) algorithm that is inspired by coordinate descent style updates. This algorithm
selectively optimizes components of the decision variable, greatly enhancing the efficiency
and scalability, while provably converging to the same solution of our proposed KIO model.

(3) Open Source Code To foster reproducibility and further research, we provide an open-
source implementation of the proposed KIO model and the SSO algorithm, along with the
source code of the experiments conducted in this study.

Notation R’} denotes the space of n-dimensional non-negative vectors. The identity square matrix
with dimension n is denoted by I,,. For a symmetric matrix @, the inequality Q) > 0 (respectively,
Q@ > 0) means that @ is positive semi-definite (respectively, positive definite). The trace of a matrix
Q is denoted as Tr(Q). Given a vector z € R", we use the shorthand notation ||z[|3, := =" Q.
Symmetric block matrices are described by the upper diagonal elements while the lower diagonal
elements are replaced by “*””. The Frobenius norm of matrix () is denoted as || Q|| 7 and the Kronecker
product is denoted as ®. The notation ();; represents the element in the i-th row and j-th column of
the matrix (. The Euclidean inner product of  and ¥ is denoted as = ' .

2 Preliminaries

2.1 Inverse Optimization
In general, to solve a data-driven IO problem we need to design two crucial components: the
Forward Optimization Problem (FOP) and the loss function. Specifically, the FOP corresponds to the
optimization problem we will “fit” to the observed dataset D = {(3;,;)}¥, (in this paper, we use
the “hat” notation (e.g., § ) for the objects dependent on the dataset). That is, our goal is to find a
parameter vector § € RP, such that the FOP

FOP(6, 5) := min Fyp(§,u), (D

u€eU(3)

replicates (as close as possible) the data, we do it by minimizing a loss function, akin to classical em-
pirical risk minimization problems. In this work, we focus on quadratic FOPs with linear constraints



and continuous decision variables:

Fy(3,u) =" Ouyu+20(w) 0s,u and U(8) := {u ER": Mu< W} , 2)

where 6 := (B, Osu), Oy € R™<7, 05, € R™*™, 5 := (0, M, W), € RY, M € R, W € RY,
and ¢ : RY — R™ is the feature function that maps the feature w to a higher-dimensional feature
space to enhance the model’s capacity.

To learn 6, we solve a regularized loss minimization problem using the Suboptimality Loss [22]

N

1
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where © := {0 = (Ouu,0su) : Ouu = I}, R(O) = ||0uu||% + [|0su|%, and k is a positive regulariza-
tion parameter. Notice that the constraint 8,,,, = I, prevents the trivial solution 6., = 05, = 0 and
guarantees the resulting FOP is a convex optimization problem. Moreover, since Fy is linear in 6, the
optimization program (3) is convex w.r.t. €, and it can be reformulated from the “minimax” form to a
single minimization problem, where the reformulation is based on dualizing the inner maximization
problems of (3) and combining the resulting minimization problems.

Proposition 1 (LMI reformulation [2]). For the hypothesis function and feasible set in (2), the
optimization program (3) is equivalent to

N
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2.2 The Kernel Method

The kernel method is a powerful technique used in machine learning and statistics that exploits the
structure of data embedded in a higher dimensional space. The kernel method has found numerous
applications, including Support Vector Machines [ 1], Kernel Principal Component Analysis [29],
and Kernel Linear Discriminant Analysis [6]. The fundamental idea behind the kernel method
is to implicitly map input data into a higher-dimensional space without explicitly computing the
transformation, thus enabling the algorithms to capture complex patterns and non-linear relationships
without heavy computational burden [32]. The kernel method generalizes the hypothesis of the
optimization problem to a nonlinear function class based on a Reproducing Kernel Hilbert Space
(RKHS) H. We are particularly interested in lifting the original optimization problem of the form
;réigﬂi[é(f(w), @)] to ?gr{lIE[é(f(w), @)], where F is the original function class, typically set to

linear or quadratic functions in the context of 10. By lifting the function class to H, we effectively
optimize over nonlinear hypotheses.

Given a proper kernel function «, that is symmetric and positive definite, Moore-Aronszajn’s re-
producing kernels theory implies that there exists a unique RKHS and a feature map ¢ with the
reproducing properties induced by «, such that Vf € H : f(w) = (f, k(-,w))u = Y0y qik(w;, w).
We therefore define ¢ : X — H, where ¢(w) = k(-,w) and w € X, as the feature map and
K : X x X — R, as the kernel function. Hence, it follows from the definitions:

k(i ;) = (B(y), p(W5)) - Q)

Furthermore, the Riesz representation theorem states that there exists a unique ¢(x) € H for all
x € X. Recall that the lifted optimization problem is formed over all nonlinear hypotheses via f € H.
However, as a result of the reproducing property [30], we can write the optimization problem in
the infinite-dimensional inner product space by substituting 2 € X with ¢(x). Hence, the resulting
optimization problems have the form shown in (6).

min E[¢((f, 6().3) ©
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In what follows, we show that the solution of the optimization problem (6) exists and it is finite
when the problem is built over a finite dataset D of size N. We leverage Representer theorem
[32] to state the the solution to the lifted problem (6) admits the kernel representation of the form
F(w) = Zfil a;k(w;, w). Effectively, this result suggests optimizing over an infinite-dimensional
RKHS has a sparse solution over the linear hypotheses.

3 Kernel Inverse Optimization

In this section, we extend the Inverse Optimization (I0) model proposed by [2] to incorporate kernel
methods. We consider a hypothesis class of the form in Equation (1). However, kernelizing such
hypotheses is not straightforward. Instead, we argue that by kernelizing the optimization problem
associated with the loss function described in Equation (3), we can obtain a forward optimization
problem (FOP) that minimizes the kernelized objective F'(s, u).

We propose to dualize the problem in (3) to obtain the dot product terms ¢(w;) T (1) that we can
substitute with the kernel function x(w;, ®;). Theorem 1 shows that the optimal solution to 6, of
the proposed dual problem is a linear function of N coefficients. Thereby, obtaining a kernelized
objective that we can plugin within the FOP.

Theorem 1 (Kernel reformulation). The Lagrangian dual of the optimization program (4) is

1 N aaT
| (S ) o e
=1 a
1 N i T ra
~ 7 J
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where k(W;, W;) = ¢(ﬁ}i)T¢(1®j) is the kernel function. The primal variables 0., and 04, can be
recovered using

B P‘Zé\; (Ai_ uﬁT>

) o S o) (207 - % )'
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Proof. See Appendix A.1. O

Notice that the complexity of the optimization program (7) does not depend on the dimensionality of
the feature vector ¢(1w;). Consequently, this allows us to use kernels generated even from infinite-
dimensional feature spaces, e.g., the Gaussian (a.k.a. radial basis function) kernel x(1;, ﬁ)j) =
exp(—7||w; — w;]|3). Program (7) is a convex optimization problem, and can be solved using
off-the-shelf solvers, such as MOSEK [3]. Once solved, we can recover the optimal primal variables
07, and 0%, from the optimal dual variables A7, I'* and P* using (8). Notice that the dimensionality
of 6%, depends on ¢, thus, it can be an infinite dimensional matrix. However, recall that our ultimate
goal is to learn an FOP, and to use it to replicate the behavior observed in the data, and combining (8)

into (1), we have that, for the signal 8pe = (Wnew> Miew, Waew ), the resulting FOP is

1 Y aia] 2 (& i)
min T (P*Z(AZ i >>u+k<z_:(ww> (mNz)) u ©)

i=1

which again does not depend on the dimensionality of ¢, but only depends on the kernel function
k. However, a major difference between solving the IO problem using the kernel reformulation
of Theorem 1 and other classical IO approaches (e.g., [22, 2, 31]) is that the resulting FOP (9)
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explicitly depends on the entire training dataset {(3;,4;)} ;. These models are sometimes called
nonparametric models [23], which means that the number of parameters of the model (in our case,
P*, A7, and I'} for all ¢ < IV) depends on the size of the training dataset.

Remark 1 (A potential variant of representer theorem). In the primal problem (4), a regularized
empirical risk loss is optimized over a set of constraints. In the learned objective function of the
FOP problem (9), the term related to the features ; (the linear coefficient of the optimizer u) can
be represented as a finite linear combination of kernel products evaluated on the input points in
the training set data, i.e., f*(-) = Zfil a;K(-, ;). This shows that the trained objective function
possesses the properties described by the representer theorem and also indicates the possibility of a
variant of the representer theorem.

In the class of cost function studied in this paper (2), 6, can be interpreted as a matrix that penalizes
the components of the decision vector u. However, for many problems, it turns out that the expert
that generates the data equally penalizes each dimension of u, or equivalently, uses 6, = I,,. This is
the case, for instance, in the Gymnasium MuJoCo environments [35], where the reward settings for
all tasks have the same penalty on each dimension of the decision vector. Intuitively, this means that
the expert trained under such reward settings tries to reduce the magnitude of the decision vector for
each dimension uniformly, rather than deliberately decreasing it for a specific dimension. Therefore,
assuming 6., = I,, as prior knowledge can reduce the model complexity and lead to faster training,
without deteriorating the performance of the learned model.

Corollary 1 (Kernel reformulation for 8,,,, = I,,). The Lagrangian dual of the optimization program
(4) with 0, = I, is

N N T, .
) 1 N U;
NI DP DL CIL) (N - 2“) < - 2L ) *ZTI"

i=1 j=1
st. A =0, T, €R” Vie S
. 10
%—2]\?[1“->0 Vie S 1o
N 1 1
[A* Fl"’]to Vie s,
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where k(i;, ;) = ¢(;) " p(1;) is the kernel function and S = {1,2,3,...,N}. The primal
variable 0, can be recovered using (8).

The proof of Corollary 1 is the same as the proof of Theorem 1 with the assumption that 8,,,, = I,,,
and is therefore omitted here. S represents an index set, where all decision variables whose indices
belong to .S will be optimized, while decision variables whose indices do not belong to S will retain
their original values and be treated as constants. In Corollary 1, all variables will be optimized, hence
S is the set comprising natural numbers from 1 to N. The concept of index set .S introduced in
Problem (10) is to align with the sub-optimization problems based on the coordinate descent method
outlined in Section 4.

In the following section, we will focus on algorithms to solve problem (10). However, all ideas also
apply to the general problem (7).

4 Sequential Selection Optimization

Solving the kernel 10 problem (10) involves optimizing a Semidefinite program (SDP), which may
become prohibitively costly if the number of semidefinite constraints and optimization variables
becomes too large. In our case, the size of the SPD grows linearly with the size of the training dataset
N. For instance, in our experiments, solving (10) with N = 20000 using CVXPY [12] requires up
to 256GB of memory. Therefore, in this section, we propose a coordinate descent-type algorithm to
find an approximate solution to (10) by iteratively optimizing only a subset of the coordinates at each
iteration of the algorithm, keeping all other coordinates fixed. We define a pair of variables A; and T';
as the i-th coordinate, denoted as {A;,I'; }. Note that in problem (10), each coordinate is decoupled
in the constraints, which is the reason the coordinate descent framework is applicable here. We call
this method Sequential Selection Optimization (SSO), and we show it in Algorithm 1.



Algorithm 1 Sequential Selection Optimization (SSO)
1: Initialize {A;, T},
2: fort=1,...,T do
3: Select a batch of p coordinates S = {a;}}_,, where a; € [1,..., N]
4
5

Update {A,,, T, }Y_, based on (10) with S
. end for

Here, we explain each step of Algorithm 1: (i) Initialization of the optimization variables. In general,
the variables are usually initialized randomly or set to O or 1. These methods are simple but can not
provide a good initial guess. (ii) Selection of a batch of p coordinates. The most natural approach to
choosing p coordinates is to select them cyclically. Alternatively, we can select the coordinates at
random at each iteration (not necessarily with equal probability). Lastly, we can choose coordinates
greedily, choosing the components corresponding to the greatest descent or the ones with the largest
gradient or subgradient at the current iteration [34]. (iii) Solving the KIO subproblem to update the
selected coordinates. The mathematical expression of the subproblem is problem (10) with S, where
S is a set containing the indices of the coordinates that need to be updated. Note that the coordinates
whose2indices ¢ S are fixed. Therefore, the number of quadratic terms in (10) scales with |S|? but
not N~=.

Next, we propose two heuristics to accelerate the convergence rate of the SSO algorithm. Namely,
we present a heuristic method for choosing which coordinates (line 3 of Algorithm 1) to optimize and
a warm-up trick to improve the initialization of the optimization variables (line 1 of Algorithm 1).

4.1 Heuristic for choosing coordinates

At each iteration of Algorithm 1, intuitively, the largest improvement will be made by updating the
“least optimal” set of p variables. One way to evaluate their degree of suboptimality is to choose the
variables with the most significant violation of the Karush-Kuhn-Tucker (KKT) conditions of the
primal version of the program (10) (i.e., (4) with 6,,,, = I,,), which is inspired by the Sequential
Minimal Optimization (SMO) method from [26].

Proposition 2. For optimal decision variables of problem (10), the coordinate, {A;,T';}, that satisfies

W; -
— —2M;T'; >0 11
N > (11)
should also satisfy
A; T [, 20]),6(d;) D
TI‘ 1 (2 n su - 2 — O (12)
([ 41} [ 126, ()13
Proof. See Appendix A.2. O

The Proposition 2 is based on KKT conditions. Based on condition (12), we can define the KKT
violation condition

kkt_violator(i) := ‘Tr(ﬁj 1“1} {In 204,9(ti) D‘ (13)

) L 1200,0(00)]3

Finally, from the violation condition (13), we can establish the following heuristic method to construct
the set S in Algorithm 1: given the current values of {A;,T';})¥ ; at iteration ¢, we choose the p
coordinates that satisfy condition (11) with the maximum KKT violation (13). However, in practice,
at each iteration, we additionally select some random coordinates to update. This ensures that all
coordinates have the chance to be updated, including those that initially do not meet the criteria
specified in condition (11), which would otherwise never be updated.

4.2 Warm-up trick for improved initialization

Another component of Algorithm 1 that may have a great practical impact is how the optimization
variables {A;, Pi}ZN:l are initialized. A poor initial guess (e.g., A; = I'; = 0) can lead to slow solver
convergence or even result in numerical instability. In this part, we propose a simple warm-up trick



that leads to a better initialization of the optimization variables. First, we divide the original dataset
D into n sub datasets Dl, .. D and solve the n small problems (10) with respect to these sub
datasets (N = |D | and S is the set of indices of all the data in D;). Then, we concatenate the optimal
solutions of these n solved small problems to form an initial guess. Here we emphasize that even
when the original problem (10) is intractable due to a lAarge training dataset (i.e., large N), each

subproblem is tractable for a small enough batch size
(10).

5 Numerical Experiments

5.1 Performance evaluation

In this evaluation, KIO is utilized in the simplified version (10), incorporating a Gaussian kernel,
tested on continuous control datasets from the D4RL benchmark [16], and we use SSO Algorithm 1
to train the model. In each task, the model’s performance is assessed through 100 episodes of testing,
and the score! for KIO is the average obtained over these 100 episodes. The parentheses following
KIO scores represent the amount of data used.

For comparison, four additional agents are selected in this experiment. IO is the inverse optimization
model without kernel method, introduced in Proposition 1. To demonstrate the effect of the kernel
method, both the KIO and IO models utilize identical datasets. The scores of two behavior cloning
agents BC(TD3+BC)[17] and BC(CQL)[20] are obtained from two offline reinforcement learning
papers. These papers have implemented their respective behavior cloning agents using the correspond-
ing datasets in D4RL, serving as baselines to compare against their proposed offline reinforcement
learning algorithms. From the original paper, BC(TD3+BC) and BC(CQL) are evaluated over 10
seeds and 3 seeds, respectively. The Teacher is the agent responsible for generating the dataset and
serves as the target for our imitation learning.

Table 1: Performance of KIO, 10, two Behavior Cloning (BC) agents, and the Teacher agent on
MulJoCo tasks from the D4RL benchmark on the normalized return metric. The numbers inside the
parentheses represent the amount of data used, and the score for KIO in every task is the average
score over 100 episodes.

Task KIO I0 BC(TD3+BCO)[17] BC(CQL)[20] Teacher
Hopper-expert 109.9(5k) 31.8 111.5 109.0 108.5
Hopper-medium 50.2(5k)  20.6 30.0 29.0 472
Walker2d-expert 108.5(10k) 0.9 56.0 125.7 107.1
Walker2d-medium 74.6(5k) 0.0 114 6.6 68.1
Halfcheetah-expert 84.4(10k) -1.7 105.2 107.0 88.1
Halfcheetah-medium  39.0(5k) -3.1 36.6 36.1 40.7

Evaluation for KIO. Table 1 displays the final experimental results, where KIO achieves compet-
itive results in four out of the six tasks. In these six tasks, except for a slightly lower score in the
Halfcheetah-expert task compared to the teacher agent, KIO’s scores are either close to or higher than
those of the teacher agent. This indicates that the KIO model exhibits strong learning capabilities
in complex control tasks. However, without the kernel method, the IO model demonstrates weak
learning capabilities, achieving only low scores in the hopper task and failing to learn anything in the
other two more challenging tasks. All hyperparameters used in this experiment for KIO are listed in
Appendix B.

Evaluation for SSO. Table 2 presents the optimal objective function values and task scores obtained
by the centralized algorithm, Splitting Conic Solver (SCS) [24], and the distributed algorithm,
Sequential Selection Optimization (SSO), for solving the problem (10). In this experiment, SCS is
employed to directly address this large-scale problem (10) with |S| = N. The corresponding solution
is evaluated 100 times, and the average is taken as the final score. Meanwhile, SSO addresses the
large-scale problem by solving a series of subproblems. After each iteration, we also assess the
current solution 100 times, taking the average as the current score. After 20 iterations, there are 20

'Regarding the definition of the score for one episode, we recommend readers to consult the official
documentation of Gymnasium [35] and the D4RL paper [16].



Task SCS SSO =+= Hopper-expert =+= Hopper-medium

Obj Value Score Obj Value Score —— Walker2d-expert  —— Walker2d-medium
Hopper experl 185219 109.9 185.220 110.2 ) Halfcheetah-expert Halfcheetah-medium
- . . . . 10
Hopper-medium 218761 502 218761 51.8
Walker2d-expert 140.121 1085 140.121  109.2 10
Walker2d-medium 151.117 74.6 151.117 74.9 1
Halfcheetah-expert 165.041 84.4 165.041 83.8
Halfcheetah-medium ~ 188.184  39.0 188.184  39.7 1071
o
. . . . 1072
Table 2: Final Objective Function Value and Score  *
. -3
(average return over 100 evaluations) for SCS [24] 1o
and SSO (20 iterations for all the tasks) algorithms. 107
The ultimate Objective Function Values of the two 107°
algorithms are nearly identical, yet across the major- 0 5 10 15 20
ity of tasks, the SSO exhibits a slightly higher Score Iteration

compared to the SCS. Figure 1: Convergence curves for SSO.

corresponding scores, and we select the highest score along with the objective function value from
the last iteration as the output. It is evident that SSO and SCS yield nearly identical optimal objective
function values. However, except for the Halfcheetah-medium task, SSO achieved higher scores
across all other tasks. Figure 1 displays the convergence performance of the SSO algorithm across
six distinct tasks, with the horizontal axis representing the number of iterations and the vertical axis
representing the error between the current objective function value and the optimal objective function
value (calculated by SCS) in problem (10). The SSO algorithm demonstrates fast convergence speed.
By the 10th iteration, the errors for all tasks are below 0.1, and by the 20th iteration, the errors have
further diminished to approximately le-4 for all tasks.

In the previous evaluation of the SSO algorithm, we limited the maximum training data to 10k to
ensure that we could directly solve problem (10) without SSO. Thereby, we were able to compare the
results with and without the SSO algorithm. However, to further verify the effectiveness of the SSO
algorithm, we tested it on a new task (the medium-expert dataset) using 100k data points. At this
scale, due to memory limitations, we were unable to directly solve the problem (10) without the SSO
algorithm, and thus could only infer the effectiveness of the SSO algorithm from its experimental
performance. Table 3 shows the results of the KIO model optimized by the SSO algorithm. The
results indicate that the KIO model achieves competitive results and is able to scale to larger data
sizes. Similarly, we provide the hyperparameters used in this experiment in Appendix B.

Table 3: Performance of KIO, two Behavior Cloning (BC) agents and the Teacher agent on MuJoCo
tasks from D4RL benchmark, on the normalized return metric. The numbers inside the parentheses
represent the amount of data used, and the score for KIO in every task is the average score over 100
episodes.

Task KIO BC(TD3+BC) BC(CQL) Teacher
Hopper-medium-expert 79.6(100k) 89.6 111.9 64.8
Walker2d-medium-expert 100.1(100k) 12.0 11.3 82.7
Halfcheetah-medium-expert  46.4(100k) 67.6 35.8 64.4

5.2 Ablation studies

We perform ablation studies to understand the contribution of each individual component: Heuristic
Coordinates Selection, abbreviated as HeuristicSelection (Section 4.1), and Warm-Up Trick (Section
4.2). We present our results in Figure 2 in which we compare the performance of removing each
component from SSO (All model hyperparameters remain unchanged as shown in Appendix B).

We use the Hopper task as the testing task and employ the first 5000 data points from the D4RL
Hopper-expert dataset as the training data. The block coordinate for each iteration consists of 2500
coordinates (|.S| = 2500). When employing the Warm-Up Trick, we partition the data into two
equal parts, solving two subproblems (10) each with |S| = 2500. Therefore, the computational time
required for the Warm-Up Trick is approximately equivalent to the time needed for two iterations
of the SSO algorithm. In Figure 2, we present the results of 20 iterations, with the vertical axis



representing the difference between the current objective function value and the optimal value in
problem (10).

It is evident that both Heuristic Coordinates

== Activate Heuristic == Naive CD

Selection and the Warm-Up Trick have signif- Heuristic = Warmup
icantly accelerated the algorithm. When us- | reenenererm?

ing the warm-up trick, the initial value of the N Heuristic
objective function is markedly reduced. Note 0\ e
that without employing the Warm-Up Trick, the | e,

Heuristic curve decreases to the initial values of 5 102 - /

the SSO curve after approximately 10 iterations, s 1(1’ i 'a
whereas using the trick requires only about 2 107! e,
iterations. With Heuristic Coordinates Selection, ig:;

the error curves descend rapidly. It’s worth not- 1074

ing the WarmUp curve, which becomes nearly 1072 S m = m
flat after a few iterations. However, at the 17th Iteration

iteration, when we activate the Heuristic Co-  Ejgyre 2: Convergence curves on the MuJoCo Hop-
ordinates Selection method, the curve starts to per task with the first 5k data points from the D4RL

decrease rapidly. Hopper-expert dataset. The vertical axis represents
. . the difference between the current objective func-
6 Conclusion and Limitations tion value and the optimal value. Sequential Se-

lection Optimization (orange) exhibits the fastest

We introduce Kernel Inverse Optimization
convergence rate.

(KIO), an inverse optimization model utilizing
kernel methods, its simple variant, along with
the theoretical derivations for them. Subsequently, we introduce the Sequential Selection Opti-
mization (SSO) algorithm for training the KIO model, which can address the memory issues by
decomposing the original problem into a series of subproblems. Finally, we empirically show that
KIO has strong learning capabilities in complex control tasks, and the SSO algorithm can achieve
rapid convergence to the optimal solution within a small number of iterations.

One of the limitations of this model is the computational cost of adding a new data point. In that case,
we need to use all the training data to calculate the coefficients for the FOP problem (see FOP (9))
for the given point. Therefore, as the amount of training data increases, the computational cost also
increases accordingly. Another limitation is the lack of theoretical analysis of the convergence rate
of the SSO algorithm, which we leave for future research. Finally, in our numerical experiments in
Section 5, the proposed KIO model, even with the SSO algorithm, requires a large amount of memory
in the order of 256 GB. However, we believe that the implementation can be improved to reduce the
memory requirements.
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A Technical Proofs

A.1 Proof of Theorem 1
A

First, let P, ;\i and "

T, . . . .
O; be the Lagrange multiplier associated with the constraints 6,,,, = I,,,
1

M)A + 2601 (i)
~ Vi
i € R?and ; € R. Then define the Lagrangian function

A € Ri and { 9:“ ] = 0 respectively, where P,A; € R"*" T'; € R",

N
L(auuaasuvAia'YivPa ;\i7Ai7Fiaai) :k||9uu||2F + kHeeu”QF - Tr(P(ouu - In)) - sz—r/\z
=1
1 1
— o’ 7 5T 0 A AW
+ N ; (ul Ounl; + 20(W;) ' Oty + 1V + W; )\Z)

N ~ A~
_ZTI.(|:A1' Fl} [@m M;"\; + 267, (wi)D’
i=1 R N i

(14)
and the Lagrange dual problem
max iIlf L(Ouu,ﬁsu,)\i,’yi,P, S\i,Ai,Fi,OAi)
P,S\i,Ai,Fi,ai euuvosu)\iﬁi
s.t. P=0,\€RL, Vi<N (15)
[Ai F’} =0, Vi<N.
* Q;

When the Lagrangian function (14) is at the point of the infimum with respect to 0y, 05y, Ai, Vi, We
have

P (SN, - 0)

oL 1 N
aa 2k9uu ~r AiA—'r - P _Ai = 0uu =
D0 +N;““2 +; 0= ok
N N y T_ 4.
OL () Doim O(Ws) (2T N
. 2Ky + 2 ;gb(wi) (N - QFZ) =0= 0y, = k( )
oL W, - . - W .
=L\ —2MT; = = — —2M,T
a)\l N )\Z 1 T O:)\Z N K2 1
aL—L_a—Oia—i
ovi AN ' CTAN

Finally, by substituting the expressions for 6,,,,, 0., \; and q; into the Lagrange dual problem (15)
and simplifying it ends the proof.

A.2 Proof of Proposition 2

Note that the problem (10) is the dual problem of the problem (4) with 8,,,, = I,,. Here, we enumerate
the five KKT conditions that will be employed

et (207 - %)

O A (stationarity), (16a)
A = N 2M;T;, Vi < N (stationarity), (16b)
):iT)\i =0,Vi<N (complementary slackness), (16¢)
Ty TN+ 207 o
Tr ([AZ Ff] [I" M; Ai + 298u¢(w1)]) =0, Vi <N (complementary slackness), (16d)
Gy I Vi
A € Ri, Vi< N (primal feasibility). (16e)
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First, we choose coordinate ¢ that satisfy condition (11). Then based on KKT condition (16b), we
have

Ai > 0. (17)
Next, based on conditions (16¢) and (16e), one can obtain
i = 0. (18)
Substituting the result (18) into condition (16d) yields
) ) T N
- ( [Az L } {In 298u¢(w2)] > o (19)
* oan] L* Vi

~; is the decision variable of problem (4) with 6,,,, = I,,. Next, let’s solve for its expression. By
utilizing the Schur complement, we can prove the following two constraints are equivalent
T i . 2
(wl)} =06 2 [N A + 200, 0(0)

2

I, M\ +20

* Yi
Therefore, problem (4) with 8,,,, = I,, can be equivalently expressed as

Jmin k0l + & S (2708, 0(0) + 4+ WA

s.t. NERL v ER, Vi<N (20)
~ 2
% 2 || 85T+ 2050000, Vi<,

Here, the variable ~; is highlighted. It can be easily proven that when +; attain its optimal values,
R 2

the equality in the last constraint should hold: ; = HMzTAi +20],0(10;)|| . Note that \; = 0 (18),
2

then the expression of ; is

a2
Vi = H29L¢(wi)||2- 2n
Substituting (21) into (19), one can obtain condition (12).

B Hyperparameters of KIO

Table 4 provides the hyperparameters used in the experiments in Section 5.

Table 4: KIO Environment Specific Parameters. (IV is the size of the dataset and p is the number of
coordinates that are updated in one iteration of SSO)

Environment Dataset k scalar P
Hopper-expert 0:5k le-6 200N 0.5N
Hopper-medium 0:5k le-6 200N 05N
Hopper-medium-expert First 50k + Last 50k 1le-6 200N  0.1N
walker2d-expert 0:5k+10k:15k le-5 50N 05N
walker2d-medium 15k:20k le-5 S0N 05N
walker2d-medium-expert First 50k + Last 50k~ le-5 50N  0.1N
Halfcheetah-expert 325k:330k+345k:350k Se-6 50N 05N
Halfcheetah-medium 10k:15k 5e-6 50N 05N

Halfcheetah-medium-expert  First 50k + Last 50k le-6 50N O0.IN
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